Relative-Error $CUR$ Matrix Decompositions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative-Error CUR Matrix Decompositions

Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly express...

متن کامل

CUR matrix decompositions for improved data analysis.

Principal components analysis and, more generally, the Singular Value Decomposition are fundamental data analysis tools that express a data matrix in terms of a sequence of orthogonal or uncorrelated vectors of decreasing importance. Unfortunately, being linear combinations of up to all the data points, these vectors are notoriously difficult to interpret in terms of the data and processes gene...

متن کامل

Efficient algorithms for cur and interpolative matrix decompositions

The manuscript describes efficient algorithms for the computation of the CUR and ID decompositions. The methods used are based on simple modifications to the classical truncated pivoted QR decomposition, which means that highly optimized library codes can be utilized for implementation. For certain applications, further acceleration can be attained by incorporating techniques based on randomize...

متن کامل

ar X iv : 0 70 8 . 36 96 v 1 [ cs . D S ] 2 7 A ug 2 00 7 Relative - Error CUR Matrix Decompositions ∗

Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly express...

متن کامل

CUR Decompositions, Similarity Matrices, and Subspace Clustering

A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces U = M ⋃ i=1 Si. The similarity matrices thus constructed give the exact clustering in the noise-free case. A simple adaptation of the technique also allows clus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2008

ISSN: 0895-4798,1095-7162

DOI: 10.1137/07070471x